Electrophoretic and functional identification of two troponin C isoforms in toad skeletal muscle fibers.
نویسندگان
چکیده
The differential sensitivity of frog twitch and slow-tonic fibers to Ca(2+) and Sr(2+) suggests that these two fiber types express different troponin C (TnC) isoforms. To date, only one TnC isoform from anurans (resembling the mammalian fast-twitch isoform) has been isolated and characterized. In this study, we examined the possibility that anuran striated muscle contains more than one TnC isoform. Toward this end, we determined the TnC isoform composition of 198 single fibers from the rectus abdominis of the cane toad (a mixed slow-tonic and twitch muscle) and of toad cardiac muscle using a method that enables the identification of TnC isoforms on the basis of the effect of Ca(2+) on their electrophoretic mobility. The fibers were typed according to their myosin heavy chain (MHC) isoform composition. The data indicate that striated muscle of the cane toad contains two TnC isoforms, one of which (TnC-t) is present in all fibers displaying only twitch MHC isoforms and the other of which (TnC-T/c) is present in fibers displaying the tonic MHC isoform and in cardiac muscle. For a subpopulation of 15 fibers, the TnC isoform composition was also compared with Ca(2+) and Sr(2+) activation characteristics. Fibers containing the TnC-T/c isoform were approximately 3-fold more sensitive to Ca(2+), approximately 40-fold more sensitive to Sr(2+), and responded to a approximately 4.6-fold broader range of [Ca(2+)] than did fibers containing the TnC-t isoform. The Ca(2+) activation properties of toad fibers containing the TnC-T/c isoform appear to be consistent with the previously reported physiological characteristics of amphibian slow-tonic muscle fibers.
منابع مشابه
Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility.
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast an...
متن کاملCardiac troponin T in developing, regenerating and denervated rat skeletal muscle.
Fetal rat skeletal muscles express a troponin T (TnT) isoform similar to the TnT isoform expressed in the embryonic heart with respect to electrophoretic mobility and immunoreactivity with cardiac TnT-specific monoclonal antibodies. Immunoblotting analyses reveal that both the embryonic and the adult isoforms of cardiac TnT are transiently expressed during the neonatal stages. In addition, othe...
متن کاملExpression and functional properties of four slow skeletal troponin T isoforms in rat muscles.
We investigated the expression and functional properties of slow skeletal troponin T (sTnT) isoforms in rat skeletal muscles. Four sTnT cDNAs were cloned from the slow soleus muscle. Three isoforms were found to be similar to sTnT1, sTnT2, and sTnT3 isoforms described in mouse muscles. A new rat isoform, with a molecular weight slightly higher than that of sTnT3, was discovered. This fourth iso...
متن کاملACELL May 45/5
Ogut, Ozgur, Henk Granzier, and Jian-Ping Jin. Acidic and basic troponin T isoforms in mature fast-twitch skeletal muscle and effect on contractility. Am. J. Physiol. 276 (Cell Physiol. 45): C1162–C1170, 1999.—Developmentally regulated alternative RNA splicing generates distinct classes of acidic and basic troponin T (TnT) isoforms. In fast-twitch skeletal muscles, an acidic-to-basic TnT isofor...
متن کاملTroponin C isoform composition determines differences in Sr(2+)-activation characteristics between rat diaphragm fibers.
Single fibers of rat diaphragm containing different naturally occurring combinations of myofibrillar protein isoforms were used to evaluate the contribution of troponin C (TnC) isoforms to fiber type-related differences with respect to sensitivity to Sr(2+) of the contractile system. Mechanically skinned fibers were studied for their isometric force vs. Sr(2+) concentration ([Sr(2+)]) relations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 290 2 شماره
صفحات -
تاریخ انتشار 2006